臭氧层破坏的原因,是以催化的方式进行的
臭氧层破坏的原因,立即引起了科学界及整个国际社会的高度重视。科学家需要对这一问题的许多现象和特征进行探索,如臭氧洞为什么发生在南极地区?为什么臭氧损耗的规模如此之大?为什么每年的南极臭氧洞发生在春季?对于这些涉及臭氧损耗的地域性、季节性及其规模的定性和定量研究,是自南极臭氧洞被发现之后的科学热点。最初对南极臭氧洞的出现有过三种不同的解释,一种认为,南极臭氧洞的发生是因为对流层的低臭氧浓度的空气传输到达平流层,稀释了平流层臭氧的浓度;第二种解释认为,南极臭氧洞是由于射线的作用在高空生成氮氧化物的结果;,美国科学家莫里纳(molina) 和罗兰德(roland) 提出,人工合成的一些含氯和含溴的物质是造成南极臭氧洞的元凶,最典型的是氟氯碳化合物(cfcs,俗称氟里昂)和含溴化合物哈龙(halons)。越来越多的科学证据否定了前两种观点,而证实氯和溴在平流层通过催化化学过程破坏臭氧是造成南极臭氧洞的根本原因。
臭氧层破坏的原因,氟里昂和哈龙是怎样进入平流层,又是如何引起臭氧破坏的呢?就重量而言,人为释放的cfcs 和halons的分子都比空气分子重,但这些化合物在对流层是化学惰性的,即使最活泼的大气组分—自由基对cfcs 和halons的氧化作用也微乎其微,完全可以忽略。它们在对流层十分稳定,不能通过一般的大气化学反应去除。经过一两年的时间,这些化合物会在全球范围内的对流层分布均匀,然后主要在热带地区上空被大气环流带入到平流层,风又将它们从低纬度地区向高纬度地区输送,在平流层内混合均匀。
臭氧层破坏的原因,在平流层内,强烈的紫外线照射使cfcs 和halons分子发生解离,释放出高活性的原子态的氯和溴,氯和溴原子也是自由基。氯原子自由基和溴原子自由基就是破坏臭氧层的主要物质,它们对臭氧的破坏是以催化的方式进行的溴原子自由基也是以同样的过程破坏臭氧,,也是催化剂。据估算,一个氯原子自由基可以破坏104—105个臭氧分子,而由halon释放的溴原子自由基对臭氧的破坏能力是氯原子的30—60倍。而且,氯原子自由基和溴原子自由基之间还存在协同作用,即二者存在时,破坏臭氧的能力要大于二者简单的加和。,上述的均相化学反应并不能解释南极臭氧洞形成的全部过程。
臭氧层破坏的原因,深入的科学研究发现,臭氧洞的形成是有空气动力学过程参与的非均相催化反应过程。所谓非均相,是指大气中除气态组分外,还有固相和液相的组分。人们对大气中存在云、雾和降雨等早已司空见惯,但这种现象一般发生在对流层。平流层干燥寒冷,空气稀薄,较少出现对流层这些天气现象。但在冬天,南极地区的温度极低,可以达到零下80 oc, 这样极端的低温造成两种非常重要的过程,一是极地的空气受冷下沉,形成一个强烈的西向环流,称为“极地涡旋”(polar vortex)。该涡旋的重要作用是使南极空气与大气的其余部分隔离,从而使涡旋内部的大气成为一个巨大的反应器。,尽管南极空气十分干燥,极低的温度使该地区仍有成云过程,云滴的主要成分是三水合硝酸(hno33h2o)和冰晶,称为极地平流层云(polar stratospheric clouds)。
臭氧层破坏的原因,实际上,当cfcs 和halons进入平流层后,通常是以化学惰性的形态(clono2和hcl)而存在,并无原子态的活性氯和溴的释放。南极的科学考察和实验室的研究都证明,化学惰性的clono2和hcl 在平流层云表面会发生以下化学反应生成的hno3 被保留在云滴相中。当云滴成长到一定的程度后将会沉降到对流层,与此也使hno3从平流层去除,其结果是造成cl2 和hocl 等组分的不断积累。
臭氧层破坏的原因,cl2 和hocl 是在紫外线照射下极易光解的分子,但在冬天南极的紫外光极少,cl2 和hocl的光解机会很小。当春天来临时,阳光返回南极地区,太阳辐射中的紫外射线使cl2 和hocl开始发生大量的光解,产生前述的均相催化过程所需的大量的原子氯,从而造成严重的臭氧损耗。氯原子的催化过程可以解释所观测到的南极臭氧破坏的约70%,,氯原子和溴原子的协同机制可以解释大约20%。
<iframe allofullscreen="" frameborder="0" height="350" src="http://.56./iframe/Mzk4NjMyMTc" idth="350"></iframe>